Au@CdS Core–Shell Nanoparticles‐Modified ZnO Nanowires Photoanode for Efficient Photoelectrochemical Water Splitting
نویسندگان
چکیده
Hydrogen production from water splitting using solar energy based on photoelectrochemical (PEC) cells has attracted increasing attention because it leaves less of a carbon footprint and has economic superiority of solar and hydrogen energy. Oxide semiconductors such as ZnO possessing high stability against photocorrosion in hole scavenger systems have been widely used to build photoanodes of PEC cells but under visible light their conversion efficiencies with respect to incident-photon-to-current conversion efficiency (IPCE) measured without external bias are still not satisfied. An innovative way is presented here to significantly improve the conversion efficiency of PEC cells by constructing a core-shell structure-based photoanode comprising Au@CdS core-shell nanoparticles on ZnO nanowires (Au@CdS-ZnO). The Au core offers strong electronic interactions with both CdS and ZnO resulting in a unique nanojunction to facilitate charge transfer. The Au@CdS-ZnO PEC cell under 400 nm light irradiation without any applied bias provides an IPCE of 14.8%. Under AM1.5 light illumination with a bias of 0.4 V, the Au@CdS-ZnO PEC cell produces H2 at a constant rate of 11.5 μmol h-1 as long as 10 h. This work provides a fundamental insight to improve the conversion efficiency for visible light in water splitting.
منابع مشابه
Synergistic Effect of Surface Plasmonic particles and Surface Passivation layer on ZnO Nanorods Array for Improved Photoelectrochemical Water Splitting
One-dimensional zinc oxide nanorods array exhibit excellent electron mobility and thus hold great potential as photoanode for photoelelctrochemical water splitting. However, the poor absorption of visible light and the prominent surface recombination hider the performance improvement. In this work, Au nanoparticles and aluminium oxide were deposited onto the surface of ZnO nanorods to improve t...
متن کاملEarth-Abundant Oxygen Evolution Catalysts Coupled onto ZnO Nanowire Arrays for Efficient Photoelectrochemical Water Cleavage
ZnO has long been considered as a model UV-driven photoanode for photoelectrochemical water splitting, but its performance has been limited by fast charge-carrier recombination, extremely poor stability in aqueous solution, and slow kinetics of water oxidation. These issues were addressed by applying a strategy of optimization and passivation of hydrothermally grown 1D ZnO nanowire arrays. The ...
متن کاملRecent Advances in Visible-Light-Driven Photoelectrochemical Water Splitting: Catalyst Nanostructures and Reaction Systems
Photoelectrochemical (PEC) water splitting using solar energy has attracted great attention for generation of renewable hydrogen with less carbon footprint, while there are enormous challenges that still remain for improving solar energy water splitting efficiency, due to limited light harvesting, energy loss associated to fast recombination of photogenerated charge carriers, as well as electro...
متن کاملHigh-performance n-Si/α-Fe2O3 core/shell nanowire array photoanode towards photoelectrochemical water splitting.
Many narrow band-gap semiconductors cannot fulfil the energetic requirements for water splitting, thus the assistance of large external voltages to complete the water decomposition reaction is required. Through thermal decomposition of Fe(NO3)3 on n-Si nanowires prepared by the chemical etching method, we fabricated a high-performance n-Si/α-Fe2O3 core/shell nanowire array photoanode that exhib...
متن کاملCdS nanoparticles sensitization of Al-doped ZnO nanorod array thin film with hydrogen treatment as an ITO/FTO-free photoanode for solar water splitting
Aluminum-doped zinc oxide (AZO) nanorod array thin film with hydrogen treatment possesses the functions of transparent conducting oxide thin film and 1-D nanostructured semiconductor simultaneously. To enhance the absorption in the visible light region, it is sensitized by cadmium sulfide (CdS) nanoparticles which efficiently increase the absorption around 460 nm. The CdS nanoparticles-sensitiz...
متن کامل